value for recreational divers. While diving requires 25 ml/min/kg, we recommend a VO2max of 25 ml/min/kg as the minimum. Regarding VO2max criteria, a poor VO2max also restricts the physical reserve (only a pace of 1800 m/h more attention is paid to VO2max and age, and these information indices come to a consensus. We conclude that BF and BMI do not influence VO2. We recommend that in medical examinations, more attention is paid to VO2max and age, and these information indices come to a consensus. We conclude that BF and BMI do not influence VO2. We recommend that in medical examinations, more attention is paid to VO2max and age, and these information indices come to a consensus.

Summary/Conclusions

\[1.0229 - 0.0404 \text{VO2max (mL/minute per kg body weight)} \]

The partial correlations strongly predicted the collinearity between age, VO2max, BMI, and BF allowing for a clear view on the contribution of body fat to VO2max. Overall, the correlations indicated that higher BMI and lower age were associated with higher VO2max, while BF had a smaller influence.

Results

and multi-variate linear regressions.

The results showed a strong direct relationship between VO2max, age, and BF, while BMI was not significantly correlated with VO2max. The regression equation was:

\[\text{VO2max (mL/minute per kg body weight)} = 1.0229 - 0.0404 \times \text{age} - 0.0293 \times \text{BMI} \]

Methods

Introduction/background/objective

Keywords: Advising, VO2max, age, bubble count, venous gas embolism

Doppler monitoring of VO2max, age, bubble count, venous gas embolism

Diving measured by Doppler monitoring after diving

The influence of body fat on bubble formation in recreational divers

OP-23